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WAVE PROPERTIES AND SHEAR STRESS OF A TURBULENT
BOUNDARY LAYER

Ya. A. Vagramenko UDC 532.525.2

The wave theory of turbulence [1-3] is applied to the problem of a turbulent boundary layer
near a planar wall. Preliminary results earlier published have been refined.

In a turbulent flow the statistical ensemble state of large-scale vortices is described by the equation [2]

in ¥ e

of 20

VZIP7 i= V—_—li (1)

where V2 is the Laplacian. The special representation § = @ exp ib makes it possible to obtain from (1) an
expression for the energy of motion hw and an equation for the probability flow a2 for stationary turbulence
(9a?/at = 0):

2 2

W = _l‘oUZ — k va , (2)
2 % a

R div(a? grad b) = 0. {3)

In this case hlgrad b] =pU, w = 8b/8t. The negative term on the right-hand side of Eq. (2) reflects the
statistical aspect of vortex-particle interactions, and equals the fluctuation energy a%p U%/2. Thus,

v2a + |grad bPa® = 0 (4)
and, besides, hw = (1 + a?pU%/2. Since h =p Ulgrad b|™, it follows that

1+ a?

U |grad b|. (5)

O =

The amplitude @ coincides withthe local turbulence intensity u'/U, where u' is the fluctuation in translational
velocity. The representation of kinetic properties of vortex-particles in terms of wave characteristics im-
plies that the individual motion of vortices is expressed in terms of statistical ensemble properties, thus
forming a set of vortex~particles. The probability distribution of the amplitude @ is such that in the region
of wave existence

f a?db = 1. (6)
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In the boundary layer approximation, when 8/ 8y > § /9%, one obtains from (3), (4)
ad + =0, (7)
azbh’ = ¢, (8)
where c is an integration constant. The differentiation in (7), (8) is with respect to the variable ¢ = y/6.

In the boundary region of a boundary layer the fluctuations are subject to action of viscous stresses from
the side of the sublayer. At a free boundary layer turbulence is similar to a jet. Therefore the vortex struc-
tures in these two regions are nonidentical, as is the case for the behavior of probability waves. A vortex is
attached in the boundary region of the wave (with its plane almost parallel to the wall), and becomes "free"
in the exterior region, where its plane is perpendicular to the wall [5]. For the coexistence of "antagonistic"
vortices of two kinds it is necessary to have a buffer wave zone, which is neutral in the sense that there exists
no predominant vortex direction in if.

On the whole the fluctuation intensity must decrease away from the wall. In the buffer zone, however, the
disorder in the vortex orientation leads to a general balance in fluctuation intensities (probabilities), and there-
fore the wave amplitude will be constant over the width of this zone (a similar circumstance is pointed out in
[3]). The limiting high level reached at de/d¢ = 0, will be the fluctuation level immediately at the wall, while
for the exterior part of the wave — it is the level af the buffer zone.

Under the conditions mentioned the configuration across the standing wave corresponds to a solution of
Egs. (7), (8) of the form

aO p E ao

= — padl Y
v=)/ 300, r=nt, g <o, o

D(r) = —— Sexp(-—rz)dr,
oo

a T a,
(P:(p2+_c_l/§®(r), 72 = lnT, Q== Pa, (10)
a=0a, <O 11)

The coordinates ¢y, ¢, refer, respectively, to the exterior boundary of the inhomogeneity region of the wave
and to the internal boundary of the exterior region of the wave, also inhomogeneous. The values of the con-
stant ¢ in (9), (10) are, in principle, different. The buffer region occupies the interval ¢; = ¢ = ¢,, and in it
a =ay. Immediately near the wall a = a. Since the level a4 is characteristic of the boundary region,

ay = agexp (—rl), (12)

where r% =1n(a o/ a,) occurs at ¢ = p;. The interval 0 = ¢ = ¢, corresponds to the existence region of the
associated vortices, and is therefore uniquely determined as half the wavelength of the probability standing
wave, for which the points ¢ =0 and ¢ = ¢, are nodes. In the interval ¢; = ¢ = ¢y, in which the wave motion
of vortices is stable at the limiting level of probability fluctuations, the parameter h, related to vortex circula-
tion [2], also reaches the limiting value h =h,. Under these conditions, not included within the special form of
the solution of (3), (4) for inhomogeneous waves, the standing wave is determined on the basis of (1), with y =

¥ gexp(—iwt), where 3 is a function of coordinates. Since 8y /8t =—iwy, then, according to (1),

Tavrp+ whyp = 0. (13)
20 -
Using relation (5) in (13), within the boundary layer approximation we have

V(1 +ah" =0 (<< (14)
It has been taken into account that for a boundary layer pU ~hob /9y, VP9 ~ 8% /8y%. If in the buffer region
hy = const, we obtain for it 8b /8y = pU/h,, while, according to Eq. (8), by = c~1p6U, a}, corresponding to the
h value at the boundary ¢ = ;. Consequently, in this region b' = cU/Ujaj, where U, is the velocity at the
boundary ¢ = ¢;. It is hence seen that to avoid a discontinuity in the phase gradient at ¢ = ¢, the ¢ values in
(10) and (9) must be chosen in such a manner that their ratio equal U,/ Uy, where U, is the velocity at the bound-

ary ¢ = ¢a.
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Assuming that the velocity near the wall increases quickly almost until the exterior flow velocity Ug,
for ¢ > ¢, we take U/ Uy~ 1; then b' = c/a% in the region ¢y < ¢ = ¢@,, and, consequently, the total phase change
is here

b= — (@ — ). (15)
ap

In this approximation the constant ¢ is the same through the whole layer width. We now find from Eq. (14)
v=sinfc(l +a)"? a7’ (¢— o] . By the existence condition of a standing wave we must have y =0 at the nodes
@ = @ys @ = @y therefore,

1
(i 4a)) " p— ) =na, n=1,23, ... (16)
1
Considering (15) and (16) simultaneously, we obtain
by=(1+a}) " ?um. (17)

Thus, tuning of the wave motion in the exterior zone ¢ > @, to the vortex fluctuation regime in the boundary
zohe ¢ =< @q requires matching of intensities and amount of half wavelengths in the buffer zone.

It can be seen that

db V2
_ 2 (18)
dr ay exp

where a4 =ajfor ¢ = ¢y, andas. = ay for ¢ = ¢,. We also take into account (11) and the condition at the ex-
terior boundary ¢ =1, @ =0, r =«. By integrating then, for a = a+exp(—r2), over the layer width we obtain
from (6)

‘/g lay + a,® (r)] + a%bl = 1. (19)

In a stationary boundary the half wavelength phase variation is 7, and then, according to (18), a, = D (r)) V' 2/,

where D(r) = Sexp rdr. . This a; value must be used in (12), which gives o, = V' 2a-tD (r;) exp (—r}) . With ac~

Q
count of (17) we now obtain (19) in the form

2n

n
By fixing n the quantity r; is found as the root of Eq. (20), following which we determine @, a. Integrating
Eq. (8) over the layer width, we see that the normalization condition (6) must also correspond to the relation
clp; = @y +1) + adb; =1. With account of Eq. (15) we find from the latter ¢ =1.

D (ry) {1 + =2 D2 () exp(—2r} )} Vexp (-2 +—= DO () + exp (=1 = 1 (20)
- n . ‘

Under the conditions r =w, ¢ =1 we determine from (10) the separation boundary of the buffer and ex-
terior wave zones ¢y=I1—a,cYn/2 . From (10) we also find the exterior nodes of the first standing half wave-
length for ¢ > @, immediately adjacent to the buffer zone: gs=92+01c7Y/2® (r3) , where the r, value is related
to the wave intensity at the point ¢ = ¢; and is found from (18) under the condition that the phase change be =
on the interval @3 — ¢,. In that case v 2D(ry/a, = m, and after eliminating a, we obtain the condition D(ry =
D(ry) exp(-r}). We note that for ¢ = ¢y @ =a; =a exp(-rd). The r;, r; values for varying n are shown in
Table 1. The characteristic wave structures are shown in Table 2, from which it is seen that the turbulence
intensity a; and the width of the wave boundary region decrease with increasing n.

Our problem, relating the wave motion with the regular flow, is described by the equations

Oou ou gt ou ov

Y —— == o~ 1 , - =0, (21>
ox oy " oy Tox ,jl ay
The shear stress 7, generated by the action of turbulent fluctuations, which for an inhomogeneous structure of
probability waves are such that exchange by fluctuation weights of kinetic energy between different flow layers
is not mutually compensating. As a result the single fluctuation on a closed contour becomes an exciting vortex

element of length I, within whose limits is generated a fluctuation rate I du /8y, while the circulation change

u
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TABLE 1. Values of the Constants ry, r;

P e | s 4 5| s 7 ] 8
r 1 0,88 0,73 0,64 3,56 0,51 0,47 0,44 0,41
rs i 0,5 0,48 0,46 0,43 0,41 0,38 0,37 0,35

TABLE 2. Characteristic Wave Structures

n ‘ D1 L2 L] aq ! a; a;
1 0,515 0,7 0,85 0,525 0,243 0,19
2 0,35 0,71 0,85 0,400 0,232 0,184
3 0,26 0,72 0,85 0,333 0,221 0,179
4 0,2 0,74 0,85 0,280 0,204 0,17
5 0,17 0,76 0,86 0,251 0,193 0,163
6 0,14 0,77 0,86 0,225 0,18t 0,157
7 0,12 0,78 0,86 0,211 0,174 l 0,151
8 0,10 0,80 0,87 0,193 0,163 0,143

equals 1%29u /9y. The statistical equivalent of the latter quantity is the mathematical expectation, defined on
the set of all segments I inclihed to the vortex formations, consisting of the contour length. The pulsation rate
occurring on the contour is commensurate with the "shear rate" (r /p)i/ 2, The inclination to the fluctuation
generated at the contour is characterized by the probability a®. For a contour length onthe order of the large
vortex scale L we obtain a mathematical expectation of a "circulation quantum" of order %L (7 /p)1/2% Con-
sequently,

LV tfp = 20w/ dy, (22)

in agreement with the coefficient £, found from the compatibility requirement of the regular and wave motion
fields.

Starting from a condition of the type of the uncertainty relation, vortex scales were found [2], according
to which

1] abl-! —1/2 1 db |t —1/2
L= e 1 +a? y L= —1— 1 4 a2 .
2,‘ ox ( ) 21 dy ( )

For slow longitudinal flow changes an "almost self-similar® solution is possible of Eq. (21) in the current
function 8Uf () , such that u = Usf’, v =1yU, (9’ —f), y=db/dx , where y is a weakly varying function of x.
Keeping in mind that [0b/0x] = ypb'/8, 106/0y] = b'/6 , where b' = c/az, we obtain from (22) © = Ey22pU} (f"y?

Here the coefficient &= !/,£ (1 +a?* is taken to be a constant quantity, since 2? < 1. Eliminating it, and
using conditions at the viscous sublayer boundary y =y, we have on it u =ug, 04/0y=ud/g,  with g, = /8.
Denoting m =u,/Ug, at the point ¢ = ¢, we have f' =m, " =m /¢, Introducing then the definition 7, = coU3/2,
for ¢ = @y, 7 F 7y We find § = ¢;c¥2m>2 , and consequently, T = c;pUs (¢f")/2m?2 . Taking into account the latter
expression, from (21) we obtain the equation

"+ of -+ pf =0, (23)
in which
B = v2m2c/c;. 24)

The solution of Eq. (23) is represented in the form of a power series in ¢, also containing terms with the log-
arithmic factor:

f=5+80 450>+ ...4 (o + 19 + cap? 4 .. ')lnf— - (25)
0
For smallest divergence we take in the latter f = 0 for ¢ = ¢,. As a result of substituting (25) into (23) we ob-
tain s4 =0, ¢, =0, and relations for determining the other coefficients: 5c, + 28, + 88y =0, 84 = — @Sy 2¢y =

—=pBcy. For By, < 2 the solution (25) acquires the form

a5 pew—e)+o(1—Fo)int].
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whence, neglecting the small quantity %, 8¢, we obtain

f’:cl[1+2ﬁcp+(1_ﬁq>) lnﬁ—}. (26)

Do

Since f' =m for ¢ = ¢y — 0, one must put ¢y =m.

The parameter § is determined from the conditions at the exterior layer boundary. As in the case of jet
turbulence {2, 3], we start from the assumption that the exterior boundary of the regular flow in the layer coin-
cides with the site ¢ = @ of the exterior half-wave, within whose limits there exists a large scale exterior
vortex adjacent to the buffer zone, and the following damped half-waves (¢4 < ¢ = 1) have no direct relation to
the shear flow. This representation corresponds to the condition ¢ = ¢j, f' =1. At the layer edge the velocity
transforms continuously to the velocity of the unperturbed flow, i.e., ¢ = ¢, f" =0, The last of these condi-
tions gives fo; = [In(@; /g — 1171, in which case we obtain from the first condition

“2—(1+—1~>0¢+1+—1—:0,a:—:1n—@—i. (27
m m Po

The solution of Eq. (27), satisfying the obvious requirement of unconfined sublayer thinning for m — 0, is writ-
ten in the form

o= (m-+m)2m, my =14y 1— 2m— 3m2 (28)

Consequently, B¢ = 2m/(m; —m). By comparing the latier expression with (24) we find the change in the
boundary layer width

_ as _ 2¢; (29)

dx mey {my —m)
The velocity profile (26) is

—u—:f’:m[1+ im_ ey 2m i)/lni+w_ . (30)
my—im @3 \ my—m Qg \ Qg 2m

Having determined the boundary conditions at a smooth wall, we start from the idea of discontinuous structure
of a viscous sublayer. The latter is developed as nonstationary viscous flow in the period between two fluc-
tuations of the boundary vortex. This viscous flow breaks down completely as the vortex approaches the wall.
If the nonstationary sublayer is formedby sudden flow generation with some velocity ug, practically constant
within the longitudinal vortex scale, the velocity distribution in this viscous flow obeys the dependence [6]

u Y /

e (€) o= l/ i (31)
For a relatively narrow sublayer (y,/6 < 1) we use u/u, ~ & (the velocity profile in the sublayer is linear).
Taking into account expression (5), for |grad b} ~ 8b /8y, u ~ U we determine the period T = 27 /w of the sub-
layer restoration in the fluctuation frequency near the wall:

4in ob \—!
T:*————~ — R 32
te (1 -+ a3) (ay) (32

For y — 0, ue must be expressed here from the mean velocity distribution (30), since the "viscous" and "tur-
bulent™ velocity profiles near the wall are completely linked. Since for ¢ — 0 we have 8b /8y = ¢/ a%é , for
t = T we find from (32) and (31) the sublayer width

2
4o = 4e, [__i@@‘_r] v (33)
cou. (1+ ag)

In (33) £, corresponds to some velocity u, at the sublayer boundary at the moment of its vortex breakdown. By
comparing the expressions of the flow stress at the wall 7¢ = uuy/yyand 7, = Y%egpU%, it follows that

Re = 2m/gc;, (34)
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where Re =6pUs/1 is the Reynolds number, determined by the width of the fluctuation region. Taking also
into account that &4 ~ uy/ug, we obtain from (33)

2
¢y = ,L;Cf__z . (35)
c (1 + ag) m?m;

Here m, =uy/u, The velocity ug of the flow, forming a nonstationary viscous flow, is realized by the stat-
istics at a distance y, from the wall equal to the interval of transverse vortex localization for y — 0 (see above),
i.e., yo =¥ (8b/8y)™1(1 + a%)‘i/z. This corresponds to ¢ = yo/0 = Yad(1 + ag)"_i/z. Then, according to (30),

me = N/m, where

N= +

my -+ 3m A(3m2 —mmy) ( 2m2A
- (m—
2 my—m

) Ind,
my—m
_ a
2 (1+a))'
According to (27) ¢, = ¢;exp(—a). Comparing this expression with (35), we obtain (for ¢ =1)

1 2 N3
= —%(&T——_:T%)— ——exp (—a). (36)

From (34) and (35) we find

. 2
Re — — 90 ps, (37)
4na; ¢
The functions (36), (37) determine the friction law in the boundary layer parametrically in terms of the velocity
ratio m =ug/Ugs (Fig. 1a,b). One may note the presence of a narrow region of Re numbers, in which one ob-
serves an initial increase of the friction coefficient during layer thickening (Fig. 2a). In this region the velocity
ratio mg at the center of the oscillating boundary vortex to that at the sublayer boundary increases from ap-
proximately 1.3 to 2.0. In this case one observes an increase in cf and y, which reflects the transition regime
of formation of a furbulent boundary layer.

For sudden (exponential) perturbation increase at the final transition stage [6] the width of the turbulent
boundary layer (within the mean flow) will be practically the same as the width 6, of the laminar layer up to
the start of transition, i.e., 6; = ¢30. In the laminar boundary layer Re; = 5(Rex)1/ 2 [6], where Re; and Rex
are the Reynolds numbers determined by the width 64 and by the longitudinal coordinate x. Consequently, the
start of the transition corresponds to Rex, = (Y;@sRe,)?, where Rey, and Re, correspond to Rex and Re at mg— 1,
i.e., the start of an established turbulent structure. Further, along the boundary layer the relation between
the numbers Re and Rex is determined from the dependence

Re
Re, = Reg + | y7'dRe,
Re,
in which the slope y of the fluctuation boundary region is known from (29) (Fig. 2b). Table 3 shows the bound-
ary layer parameters at the start of the transition (a) and after the completion of transition (b), which corre-
sponds to a maximum of cg, v. The change in the local friction coefficient as a function of Rey is shown in

Fig. 3.

Each time, following the achievement of a new critical layer width there occurs a rearrangement of the
fluctuation field beneath in the flow for n increasing by unity. There exists a number of "standard" structures
of a turbulent boundary layer, so that its start for n =2, 3, 4, ... corresponds to one of the numbers Rey, =
2.25 - 105, 6.63 - 10%, 1,71 - 10°, and so forth (Table 3). The well-known experimental data [6] indicate that the
observed Rey, of the transition are indeed grouped near these calculated values. (For n =1 a realization of a
stable structure is, obviously, impossible, since the width of the buffer zone is smaller than the size of the
boundary vortex penetrating this zone.) Which of the transitions mentioned above is realized depends on the
level of the initial perturbation. This problem requires separate consideration [4].

The external fluctuation boundary layer is such that the probability wave "splashes"™ following the stat-
istical limits of the mean flow ¢ = @3 According to Table 2, ¢; =0.85-0.86, i.e., the region of possible vortex
neglect is approximately 1.2 times wider than the region of regular motion in the layer. This corresponds to
experimental data.
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TABLE 3. Data for Establishment of Turbulent Structure

" " | 1074Re 10=5 Re,, 10%; 102,y
1 8- 0,325 0,127 ¢,59 5,11 5,16
[ 0,310 0,156 0,65 6,30 4,81
g @ 9,31 $,28 2,25 3,53 2,70
6 0,265 0,39 2,62 4.5 3,21
3 4 0,28 0,48 6,63 3,04 2,18
6 0,24 0,686 7,44 3,72 2,71
4 a 0,255 0,768 17,1 2,65 1,%0
6 0,225 1,04 18,3 3,10 2.35
5 2@ 0,245 1,01 30,4 2,3 1,65
Y6 g,21 1,49 32,7 2,87 2,18
6 2 0,23 1,35 54,1 2,20 1,6
6 0,20 2,01 57,6 2,62 2,04
;@ 0,225 1,58 73,8 2,05 {,51
6 0,195 2,37 78,1 2,49 1,97
o 4 0,215 1,98 117 1,96 1,47
g ! 0,190 2.86 192 2,33 1,87
: 3
mi{ a 10°¢Cy b
2 & -
9= A\ n=1 \\\\\
AV ) IR s SN
026 4 4 4
N * 7
6
4
g2z \\\7\\&“ 2 673
% . 17 ‘
54 % igre 38 1qRe

Fig. 1. The local friction coefficient (a) and the ve-
locity at the sublayer boundary (b) as a function of Re.
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Fig. 2. The slope of the external boundary layer (a) and the

corresponding Reynolds number (b).
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Fig. 3. Change in the local friction coefficient along
the boundary layer.
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Fig. 4. Velocity V'ariatiori near a wall (a) and across
the width of the boundary layer (b).

Figure 4a shows the profile of u/u ; according to (30) for m =0.23, cf =4.2 + 1073 (n = 2) in the coordinate
N == pu.ylp = ¢ (c4/2)'* Re, where ux =V'7,jp = U, (c;/2)'/*  (the points are the experimental data of [6]). The pro-
file of the excess velocity Au = Ug — u, calculated in the coordinate ¢° =y/86; = ¢ /¢,, is shown in Fig. 4b.
In the external layer region this profile slightly deviates from the experimental points for ¢ ~ 0.4, which is
obviously a price for the approximation used for 7 in the buffer zone. The exact expression for ¢; = ¢ < @y,
compatible with the expression for ¢ = ¢y, is for b' = cu/Uja} of the form 7 = xB(¢f"/f")?, where y is the
value of f'2 at the point ¢ = @3 B =cgU%/2c®m?. Then

tp(c;—’,c) + B = 0. (38)
For f' — 1, x — 1 Egs. (23) and (38) are quite close to each other, with some of the deviation mostly related to
the 1 distribution.

NOTATION

¥, wave function; x and y, longitudinal and transverse rectangular coordinates; t, time; U, absolute value
of the forward speed in the layer; Uy, external flow velocity; p . density (incompressible flow); ¢ and b, wave
amplitude and phase; w, fluctuation frequency; &, width of the fluctuation region; 7, shear stress; 7y, friction
stress at the wall; u, viscosity coefficient; u and v, longitudinal and transverse components of the mean ve-
locity; h, "quantum" parameter; and cg, local friction coefficient.
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